The study of gravitation 

The study of gravitation

This field of inquiry has in the past been placed within classical mechanics for historical reasons, because both fields were brought to a high state of perfection by Newton and also because of its universal character. Newton’s gravitational law states that every material particle in the universe attracts every other one with a force that acts along the line joining them and whose strength is directly proportional to the product of their masses and inversely proportional to the square of their separation. Newton’s detailed accounting for the orbits of the planets and the Moon, as well as for such subtle gravitational effects as the tides and the precession of the equinoxes (a slow cyclical change in direction of Earth’s axis of rotation), through this fundamental force was the first triumph of classical mechanics. No further principles are required to understand the principal aspects of rocketry and space flight (although, of course, a formidable technology is needed to carry them out).

The study of gravitation
The study of gravitation
The study of gravitation

Gravitational force hi-res stock photography and images - Alamy

Although conceived of as distinct phenomena until the 19th century, electricity and magnetism are now known to be components of the unified field of electromagnetism. Particles with electric charge interact by an electric force, while charged particles in motion produce and respond to magnetic forces as well. Many subatomic particles, including the electrically charged electron and proton and the electrically neutral neutron, behave like elementary magnets.

The study of gravitation

On the other hand, in spite of systematic searches undertaken, no magnetic monopoles, which would be the magnetic analogues of electric charges, have ever been found.

The field concept plays a central role in the classical formulation of electromagnetism, as well as in many other areas of classical and contemporary physics. Einstein’s gravitational field, for example, replaces Newton’s concept of gravitational action at a distance. The field describing the electric force between a pair of charged particles works in the following manner: each particle creates an electric field in the space surrounding it, and so also at the position occupied by the other particle; each particle responds to the force exerted upon it by the electric field at its own position.

 

Optics

Because light consists of electromagnetic waves, the propagation of light can be regarded as merely a branch of electromagnetism. However, it is usually dealt with as a separate subject called optics: the part that deals with the tracing of light rays is known as geometrical optics, while the part that treats the distinctive wave phenomena of light is called physical optics. More recently, there has developed a new and vital branch, quantum optics, which is concerned with the theory and application of the laser, a device that produces an intense coherent beam of unidirectional radiation useful for many applications.

The formation of images by lenses, microscopes, telescopes, and other optical devices is described by ray optics, which assumes that the passage of light can be represented by straight lines, that is, rays. The subtler effects attributable to the wave property of visible light, however, require the explanations of physical optics. One basic wave effect is interference, whereby two waves present in a region of space combine at certain points to yield an enhanced resultant effect (e.g., the crests of the component waves adding together); at the other extreme, the two waves can annul each other, the crests of one wave filling in the troughs of the other. Another wave effect is diffraction, which causes light to spread into regions of the geometric shadow and causes the image produced by any optical device to be fuzzy to a degree dependent on the wavelength of the light. Optical instruments such as the interferometer and the diffraction grating can be used for measuring the wavelength of light precisely (about 500 micrometres) and for measuring distances to a small fraction of that length.

Atomic and chemical physics

The study of gravitation
The study of gravitation

In the 20th century, the atomic hypothesis was established, confirming that matter is composed of a few types of atoms. Unlike the ancient belief in indivisible atoms, today’s atoms can be divided into electrons and a nucleus. Atoms combine to form molecules and other compounds. Chemistry and physical chemistry study the structure of molecules, while condensed-matter physics focuses on crystals. These disciplines examine the important properties of matter, particularly those influenced by the outer electronic structure of atoms. The mass and charge of the atomic nucleus impact the chemical and physical characteristics of matter, including biologic matter.

One of the great achievements of the 20th century was the establishment of the validity of the atomic hypothesis, first proposed in ancient times, that matter is made up of relatively few kinds of small, identical parts—namely, atoms. However, unlike the indivisible atom of Democritus and other ancients, the atom, as it is conceived today, can be separated into constituent electrons and nucleus. Atoms combine to form molecules, whose structure is studied by chemistry and physical chemistry; they also form other types of compounds, such as crystals, studied in the field of condensed-matter physics. Such disciplines study the most important attributes of matter (not excluding biologic matter) that are encountered in normal experience—namely, those that depend almost entirely on the outer parts of the electronic structure of atoms. Only the mass of the atomic nucleus and its charge, which is equal to the total charge of the electrons in the neutral atom, affect the chemical and physical properties of matter.

Although there are some analogies between the solar system and the atom due to the fact that the strengths of gravitational and electrostatic forces both fall off as the inverse square of the distance, the classical forms of electromagnetism and mechanics fail when applied to tiny, rapidly moving atomic constituents. Atomic structure is comprehensible only on the basis of quantum mechanics, and its finer details require as well the use of quantum electrodynamics (QED).

Atomic properties are inferred mostly by the use of indirect experiments. Of greatest importance has been spectroscopy, which is concerned with the measurement and interpretation of the electromagnetic radiations either emitted or absorbed by materials. These radiations have a distinctive character, which quantum mechanics relates quantitatively to the structures that produce and absorb them. It is truly remarkable that these structures are in principle, and often in practice, amenable to precise calculation in terms of a few basic physical constants: the mass and charge of the electron, the speed of light, and Planck’s constant (approximately 6.62606957 × 10−34 joule∙second), the fundamental constant of the quantum theory named for the German physicist Max Planck. Conservation laws and symmetry

Since the early period of modern physics, there have been conservation laws, which state that certain physical quantities, such as the total electric charge of an isolated system of bodies, do not change in the course of time. In the 20th century it has been proved mathematically that such laws follow from the symmetry properties of nature, as expressed in the laws of physics. The conservation of mass-energy of an isolated system, for example, follows from the assumption that the laws of physics may depend upon time intervals but not upon the specific time at which the laws are applied. The symmetries and the conservation laws that follow from them are regarded by modern physicists as being even more fundamental than the laws themselves, since they are able to limit the possible forms of laws that may be proposed in the future.

Conservation laws are valid in classical, relativistic, and quantum theory for mass-energy, momentum, angular momentum, and electric charge. (In nonrelativistic physics, mass and energy are separately conserved.) Momentum, a directed quantity equal to the mass of a body multiplied by its velocity or to the total mass of two or more bodies multiplied by the velocity of their centre of mass, is conserved when, and only when, no external force acts. Similarly angular momentum, which is related to spinning motions, is conserved in a system upon which no net turning force, called torque, acts. External forces and torques break the symmetry conditions from which the respective conservation laws follow.

In quantum theory, and especially in the theory of elementary particles, there are additional symmetries and conservation laws, some exact and others only approximately valid, which play no significant role in classical physics. Among these are the conservation of so-called quantum numbers related to left-right reflection symmetry of space (called parity) and to the reversal symmetry of motion (called time reversal). These quantum numbers are conserved in all processes other than the weak force.

Other symmetry properties not obviously related to space and time (and referred to as internal symmetries) characterize the different families of elementary particles and, by extension, their composites. Quarks, for example, have a property called baryon number, as do protons, neutrons, nuclei, and unstable quark composites. All of these except the quarks are known as baryons. A failure of baryon-number conservation would exhibit itself, for instance, by a proton decaying into lighter non-baryonic particles. Indeed, intensive search for such proton decay has been conducted, but so far it has been fruitless. Similar symmetries and conservation laws hold for an analogously defined lepton number, and they also appear, as does the law of baryon conservation, to hold absolutely.

Influence of related disciplines on physics

The relationship of physics to its bordering disciplines is a reciprocal one. Just as technology feeds on fundamental science for new practical innovations, so physics appropriates the techniques and instrumentation of modern technology for advancing itself. Thus experimental physicists utilize increasingly refined and precise electronic devices. Moreover, they work closely with engineers in designing basic scientific equipment, such as high-energy particle accelerators. Mathematics has always been the primary tool of the theoretical physicist, and even abstruse fields of mathematics such as group theory and differential geometry have become invaluable to the theoretician classifying subatomic particles or investigating the symmetry characteristics of atoms and molecules. Much of contemporary research in physics depends on the high-speed computer. It allows the theoretician to perform computations that are too lengthy or complicated to be done with paper and pencil. Also, it allows experimentalists to incorporate the computer into their apparatus, so that the results of measurements can be provided nearly instantaneously on-line as summarized data while an experiment is in progress.

The physicist in society

Physics, a field often distant from everyday experiences and reliant on complex mathematics, has sometimes made physicists appear as a secretive group with difficulty communicating their findings to the public. However, their role in society has grown since World War II, with governments providing significant funding for research through agencies like the National Science Foundation and the Department of Energy in the United States. Institutions such as the Fermi National Accelerator Laboratory and CERN in Europe house large particle accelerators for physics research. Germany’s Max Planck Society and Japan’s Japan Society for the Promotion of Science also support physics research.

The study of gravitation  In Trieste, Italy, there is the International Center for Theoretical Physics, which has strong ties to developing countries. These are only a few examples of the widespread international interest in fundamental physics.
The study of gravitation

Basic research in physics is obviously dependent on public support and funding, and with this development has come, albeit slowly, a growing recognition within the physics community of the social responsibility of scientists for the consequences of their work and for the more general problems of science and society.

1 thought on “The study of gravitation ”

  1. Pingback: No need to worry start your business now and move forward0.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top